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Abstract--The opening of a high-pressure vessel, in the form of a closed cylinder which is initially occupied 
by subcooled water, is considered. At time zero one end of the tube is opened and the liquid starts to 
flow out. As the atmospheric pressure is less than the liquid saturation pressure, the liquid efflux is 
accompanied by boiling. A mathematical model of the liquid boiling is proposed which takes into 
consideration two vaporization mechanisms: (1) the boiling on admixtured particles in the liquid; and (2) 
the break-up of bubbles. For realization of the second mechanism, a definite correlation between the 
bubble dimension and the difference in the phase velocities must be attained. Using this model, an unusual 
wave process, found previously experimentally, is described successfully, i.e. a "slow" wave of discharge, 
which in spreading along the non-equilibrium two-phase mixture transfers it into a state of equilibrium. 
Earlier known models of boiling liquid failed to explain the appearance of this wave. 
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1. INTRODUCTION 

To calculate power construction safety systems it is necessary to determine precisely the parameters 
of the process of the efflux of boiling liquid from vessels. Much experimental material on such 
processes has been accumulated. Many authors compare their calculations with the experiments 
of Edwards & O'Brien (1970). A working section of Edwards & O'Brien's experimental plant was 
in the form of a closed cylinder of length 4.1 m and 0.073 m dia. The cylinder was initially occupied 
by subcooled water with temperature To = 515 K and at pressure P0 = 6.9 MPa. Liquid of such a 
temperature starts boiling under the saturation pressure p~(To)= 0.5p0. At time zero, a glass disk 
which closed the right-hand end of the cylinder was destroyed (the destruction time was < 10 -3 s). 
As the atmospheric pressure was less than the liquid saturation pressure, the liquid efflux was 
accompanied by boiling. 

Pressure oscillograms measured at different points of the tube are shown in figure l(a). The 
pressure and volumetric vapour fraction oscillograms measured in the cross-section at a distance 
of 1.39 m from the closed cylinder end are shown in figure l(a) by the solid line. The volumetric 
vapour fraction was measured by examination with ?-rays. In experimental oscillograms, a "slow" 
wave of discharge spreading along the boiling liquid with a speed of the order of 10 m/s is clearly 
seen. An analogous wave configuration has been observed in a boiling CO2 efflux investigation 
(Isaev 1980). 

In spite of the fact that the existence of this "slow" wave has been known for over 20 years, 
the mechanism of its appearance remains unclear. 

Current models for the description of boiling liquid flows can be divided into two types. The 
first type is a model of shock boiling (Labuntzov & Avdeev 1981). It is considered that, after 
opening of the vessel, a discharge wave of p0 - p .  amplitude, where p .  <p~(T0) is the model free 
parameter, enters the vessel at the speed of sound in a pure liquid. Then through a metastable 
liquid, where superheats are ps(To)-p., moves a shock wave of discharge, in which the liquid 
starts to boil, i.e. a "slow" wave is viewed as a shock wave. Such a model allows one to obtain 
sufficient agreement with experiments. However, applying the model of shock boiling to the given 
flow description [see figure 2a,b)], it is predicted that the liquid near the closed tube side should 
stay in a subheated state without starting to boil for 0.3 s (until the "slow" wave arrives) and, in 
the case of a longer channel, for an even longer time, in variance with modern views of boiling 
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Figure l. Pressure oscillograms at various tube cross-sections (the locations of which are shown in the 
insert): (a) experiment (Edwards & O'Brien 1970); (b) calculation with the help of the one-velocity model 

(Nigmatulin & Soplenkov 1980); (c) calculation with the help of the advanced model. 

liquid properties. Secondly, the model of shock boiling fails to explain the experimental fact that 
the liquid starts to boil [figure 2(b)] before the "slow" wave arrives. 

The second type of model can be called a "kinetic" one. The main consideration of such an 
approach is the modelling of liquid features. Boiling is assumed to begin on admixtured particles 
when the pressure decreases to the saturation pressure. In the non-equilibrium model (Nigmatulin 
& Soplenkov 1980), the particle concentration is selected according to calculations corresponding 
to the experiment. In the equilibrium model (Ivandaev & Gubaidullin 1978), the admixtured 
particles concentration is assumed infinitely large, and therefore, the liquid and vapour phases are 
considered always to be in equilibrium. 

Pressure osciUograms in the five channel cross-sections obtained with the use of the non-equi- 
librium model (Nigmatulin & Soplenkov 1980) are shown in figure l(b). It can see that calculations 
based on this model misrepresent the flow character. In figure 2(a,b) the theoretical pressure and 
volumetric vapour content oscillograms at the cross-section z = 1.39 m are compared with the 
experimental ones. The experimental curves are shown by the solid line. Curves calculated on 
equilibrium (Ivandaev & Gubaidullin 1978) and non-equilibrium (Nigmatulin & Soplenkov t980) 
models are shown by the dashed and dotted lines, respectively. An equilibrium model does not 
describe the drop in pressure below the saturation line. The non-equilibrium model (Nigrnatulin 
& Soplenkov 1980) describes the drop in the pressure but does not explain the appearance of the 
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Figure 2. Oscillograms of  the pressure (a) and the volumetric vapour content (b) at the cross-section 
1.39 m from the closed end of  the tube: , experiment; . . . .  , equilibrium model; . . . .  , non-equilibrium 

model without bubble break-up; - - - - - ,  advanced model. 

"slow" wave. A search for new physical representations of the liquid boiling process was necessary 
in order to understand the reasons leading to the formation of the "slow" discharge wave. 

2. MODEL OF BOILING LIQUID FLOW 

The hypothesis is advanced in this paper that, in addition to the earlier known vaporization 
mechanism consisting of a heat growth of bubbles formed on admixtured particles, there is another 
mechanism--bubble break-up. A necessary condition for this mechanism to be realized is that a 
definite correlation of the difference in the phase velocities and the bubble dimension is attained. 
For verification of the proposed hypothesis, a mathematical model was composed. The following 
assumptions were made under this model: 

(1) Boiling was assumed to take place on admixtured particles in the liquid. The 
number of  particles that nucleate boiling per unit of  the volume was assumed 
to be the same (no = 108 m -3) as in calculations on the model (Nigrnatulin & 
Soplenkov 1980). 

(2) The pressures in the phases were assumed to be equal. 
(3) The parameters in a bubble were considered uniform and equal to those on the 

saturation fine. 
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(4) The difference in the phase velocities was assumed to be much less than the flow 
speed. 

Taking into consideration the above assumptions, the system of equations for a two-phase 
mixture can be written. The equations for conservation of mass for the mixture and gas phase are 

ap aLou] 
a t  + az = o [1] 

and 

a[poE] a[pcEu] a ~  + a ~  = jn, [2] 

where: p = p L ( 1 -  E ) +  pG E is the mixture density, PL and Pc are the liquid and gas densities, 
respectively; c is the volumetric vapour fraction; 

U = U L "~ PG E (U G - -  UL) 
P 

is the velocity of the centre of mass (the mixture velocity) which is equal, on the grounds of 
assumption (4), to the liquid velocity (u = UL); UL and uG are the liquid and gas velocities, 
respectively; j is the intensity of the liquid vaporization into a bubble; and n is the number of 
bubbles per unit mixture volume. 

The equation for conservation of momentum of the mixture is 

a[pu] a[pu 2 + p ]  
- -  -~ = 0 ,  [3 ]  

at az 
where p is the pressure. 

The equation for conservation of energy of the mixture is 

a[P(i+U---2)--P]-~ a[pu(i+U---';)]=O, [4] 

at az 
where 

i = pL(I -- E) iL q- pG £ iG 
P P 

is the enthalpy of the mixture and i L and i G are the liquid and gas enthalpies, respectively. 
The equation for the number of bubbles is 

On a[nu] 
- -  - ~,, [5] 

at az 

where ~k is the intensity of the bubble break-up. 
The equation for conservation of momentum of the bubbles is 

4 3 { a U G  aUGX~ 
PG3 xa k-- ~ -  + u az ] =fA q-fro q-f•, [6] 

where a is the bubble radius and f A, fm and fu are the interfacial forces of Archimedes (buoyancy), 
virtual mass and drag, respectively. 

From assumption (4), the system of equations [1]-[6] lacks terms characterizing the mass, impulse 
and energy change in a volume moving with a mean mass velocity (u), due to the withdrawal from 
this volume of the portion of bubbles and liquid whose velocities are not equal to the velocity of 
the centre of mass. The difference in the phase velocities is considered to affect only the process 
of bubble break-up. 

The force or Archimedes (buoyancy) is given by 

4 3 {aU aU 
fA = PL3 na k-8- ~ + U OZ } " [71 



BUBBLE BREAK-UP AND THE BOILING LIQUID EFFLUX 731 

The virtual mass force is defined as 

pr 4 3 f l'Ou OU'~ [OUt OUG'~ f ~_~_~ (Oa Oa'~ Ej "]) 

[8] 

The expression for the interfacial drag force is 

fu = ~ pL ~a:(u -- uo)lu -- uo I" [9] 

An expression for the interfacial drag coefficient is obtained by extrapolation of cu dependences 
from Reynolds numbers derived by Adamar-Riybchinskii and Moore (Batchelor 1970) up to their 
intersection: 

f 16, Re ~< 10.9; 

c~ = 4 8  1 - -  
~ - ~  x / r ~  / Re > 10.9; 

where the bubble Reynolds number is defined as 

2apL lU -- UG I 
Re = 

and/~ is the liquid viscosity. 
Define the intensity of the liquid vaporization into a bubble as j and the bubble-break-up 

intensity as ~. Assuming that the bubbles streaming does not affect the process of vaporization, 

j = 2rraDLpGJa Nu 

is obtained, where 

Ja = ¢ L P L ( T L  - -  T~) 2a ar I 
prl ' N u -  TL---- Ts ~r  r=, 

are the Jacob and Nusselt numbers, CL and DL are the coefficients of heat and temperature 
conductivity, I is the specific heat of vaporization, TL and Ts are the liquid and vapour temperatures 
and r is the polar radius of a spherical coordinate system with its centre at the bubble centre, 

It is known (Scriven 1959) that if the liquid temperature is constant on its boundary with a bubble 
then, in the course of time, the temperature distribution around a bubble reaches the profile 
corresponding to an automodel solution. The profile occurs at time Tr ~ (a/Nu)2/Dt ~ 10 -3 s. In 
time Zr the liquid temperature changes on its boundary with a bubble by approx. 0.1 K, i.e. much 

less than characteristic liquid overheats which are ~ 10 K [figure l(a)]. Therefore, the temperature 
distribution around a bubble is considered in order to satisfy the automodel solution at every 
moment in time. Since the ratio of the vapour density to that of the liquid is Pc/Pt "~ 1 for the flow 
under consideration, the approximation offered for this case by Labuntsov et al. (1964) is used: 

[ '<')",0,, + a'l N u =  Ja 1 D 

Bubble break-up occurs as a result of interphase surface instability. The hypothesis has been 
proposed and proved, with the help of known experimental data (Nigmatulin 1978), that the basic 
regularities for the development of instabifity in spherical surfaces are the same as for a plane 
interphase boundary. 

The rise in amplitude of a harmonic perturbation with wavelength 2 arising on a plane interphase 
boundary is given by (Birkhoff 1960): 

6 = ~o exp[I(2)t], [10] 
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where 6o is the amplitude of an initial perturbation, 

I ( ~  = F pLpG(uG -- Ut)24/r2 •8/Z3 ] [1 1] 
" -"  L (PL + PG) 2'~2 (PL -1- PG) '~'3 

and Z is the coefficient of surface tension. 
The expression fo r / ,  [11], considers only Kelvin-Helmholtz instability, which arises from the 

difference in the phase velocities. 
From [11], it follows that I will be positive (I > 0) when the wavelength of a harmonic 

perturbation is greater than a critical value: 

2nY-,(P6 + PL) 
2 > (~O - -  UL)2pLPG " [12] 

On the other hand, according to Nigmatulin's scheme, the length of a wave causing bubble 
break-up cannot be greater than its diameter: 

2 ~< 2a. [13] 

It follows from [12] and [13] that perturbation of a bubble surface occurs when Weber's number 
reaches its critical value, We*= 2rt: 

2a(uo - UL) 2 PLPG 
We - > 2ft. 

E PG + PL 

Bubble break-up occurs in the time t* which is required for the amplitude of the perturbation 
to reach a value comparable with the bubble radius (6 ~ a). 

Since the amplitude of perturbations increases according to an exponential law [10], t* is assessed 
as 

1 
t * ~  

I(2") '  

where 2" is the wavelength for which 1/I is minimal. 
The expression for t* is given by (Nigmatulin 1978) 

t L \ W e /  " 

Knowing the characteristic time of bubble break-up t* and assuming that a bubble divides into 
two parts, an approximation can be made by the relaxation equation: 

0, if We < We* = 2n; 
¢ =  (n* - -n ) / t * ,  ifWe>~We*; 

where n is the number of bubbles in a unit volume of the mixture and n * is the number of bubbles 
in a unit volume of the mixture under the condition of an instantaneous break-up: 

n* 
- -  ~ 2 .  

n 

The numerical integration method is given in the Appendix. 

3. RESULTS OF THE NUMERICAL CALCULATION 

The efflux of boiling liquid from a semi-infinite channel is considered. This solution allows the 
exclusion of waves formed by reflection from the closed end of the vessel from the wave picture. 
The numerical calculation of this process within the bounds of the model considering bubble 
break-up that the wave configuration consists of three waves--schematically shown in figure 3 by 
the solid line. The configuration obtained when using the model (Nigmatulin & Soplenkov t980) 
which does not consider bubble break-up is shown by the dotted line. 

A fast wave of discharge, consisting of an elastic precursor, a "trough" of boiling and a zone 
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Figure 3. Scheme of the progression of  the wave process after the opening of  a semi-infinite channel: . . . .  , 
calculation with the model without bubble break-up; , calculation with the advanced model. 

of relaxation, is the first move in the channel. The forefront of this wave, an elastic precursor 
spreading at the speed of sound in the liquid, converts the liquid into a metastable state. 

After the passage of the elastic precursor the pressure in the mixture begins to increase rapidly 
but, in contrast to the case of a compression wave, the pressure growth is accompanied by an 
increase in the specific mixture volume. Gradually the pressure growth ceases and further liquid 
expansion proceeds under slowly decreasing pressure. 

Near the exit cross-section of the vessel the bubble size, the pressure gradient, the stream 
acceleration and, consequently, the phase speed difference are at a maximum. The conditions for 
bubble break-up are created initially at the channel exit. Bubble break-up causes a sharp increase 
in the interphase area, which leads to intensification of the vaporization process. 

An explosion-like boiling increases the pressure at the channel exit, and a compression wave 
recedes into the vessel after the discharge wave. A second discharge wave, in which three zones 
can be distinguished, follows the compression wave: (1) a zone of weak boiling, in which the 
non-equilibrium mixture is boiling on initial nucleation centres; (2) a zone of intensive boiling, in 
which the interphase mass exchange is intensified (due to bubble break-up) and the mixture is 
converted into a state of equilibrium; and (3) a zone of equilibrium expansion. 

When the boiling liquid flows out of real constructions, vessels of finite length, the first wave 
of discharge reflects from the closed end of the tube and going back, it creates an area with an 
increased content of vapour and damping. When the compression wave passes through this area, 
it also causes damping and the pressure becomes uniform from the closed end of the tube to the 
front of the bubble break-up. The second wave of discharge degenerates into a "slow" wave. Thus, 
the "slow" wave of discharge noticed in experiments (Edwards & O'Brien 1970; Isaev 1980) is none 
other than part of the second wave of discharge or, in other words, the wave of reorganization 
of the second discharge wave profile. 

The pressure distributions and number of bubbles per unit of mixture volume and the volumetric 
vapour content at different moments in time are shown in figure 4; the numbers in this diagram 
correspond to the time in seconds. 

It is seen that bubble break-up leads to rapid growth of the volumetric vapour content (to the 
expansion of the mixture), a pressure fall and, consequently, to an increase in the difference in the 
phase velocities. The conditions for bubble break-up are created up to the flow. 

The spread velocity of the front of bubble break-up and, consequently, this velocity of a "slow" 
wave movement are gradually increased. This is related to the fact that this wave is moving through 
the medium with an ever-increasing vapour content, while a vapour content increase in the mixture 

. . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Figure 4. Parameter  distribution along the channel under the mot ion of  a "slow" wave of  discharge. The 
numerals  in the plot correspond to the process time in seconds. 

facilitates the process of bubble break-up. At a sufficiently distant point of the tube, where the 
mixture transition into a state of equilibrium has time to occur without the destruction of 
bubbles, a "slow" discharge wave will regenerate into a centred discharge wave moving through 
the equilibrium mixture. 

Pressure osciUograms at some points of the vessel, calculated on the advanced model, are 
shown in figure l(c). Experimental and calculated oscillograms of the pressure and volumetric 
vapour content in the cross-section 1.39 m from the closed end of the tube are compared in 
figure 2(a,b). The results of the calculations with the given model are shown by a dash-d0t line. 
It is seen that the advanced model permits the description of the eiflux process both qualitatively 
and quantitatively. 

4. THE E F F E C T  OF A FREE P A R A M E T E R  ON N U M E R I C A L  CALCULATIONS 
OF THE BOILING LIQUID E F F L U X  PROCESS 

The only free parameter in the given model is the number of particles that nucleate boiling no. 
The parameter n o is chosen so that predicted overheats (Tl -- Ts) correspond to experimental ones 
in the initial stage of effiux (t ~< 10 -2 s). On these grounds, the value of no is taken to be 108 m -3. 
Choosing such an no, the main stage of the discharge process can be described (t ,-~ 10 -1 s). 

Consider what will happen to the prediction if no is either greater or smaller than 10 s m -3. 
When no is taken to be too high, 10 ~1 m -3, liquid and vapour, according to the given model, 
should be practically in equilibrium, due to the large interphase surface. In this case, the 
predictions of  the given model coincide with that of an equilibrium model--shown by the dotted 
line in figure 2(a,b). As shown earlier this model does not describe the experiment. 
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Figure 5. The effect of a free parameter on the numerical calculations of an initial stage of the boiling 
liquid efllux process: - - ,  n o = l0 s m-3; . . . .  , no = 106 m -3. (a) Pressure and (b) number of bubbles 

distributions along the channel at time t = 3 ms. 

Compare  the calculations of  an initial eiflux stage in two cases. In the first one, no = 10 8 m -3 (solid 
line in figure 5); and in the second one, no = 10  6 m - 3  (dotted line in figure 5). It is seen that in the 
second case the compression wave has a greater amplitude and bubble break-up occurs in this wave 
(figure 5). As a result of  break-up, the number  of  bubble increases by 6 orders of  magnitude and 
the mixture transfers into an equilibrium state. Thus, calculations with a small number  of  initial 
nucleation centres predict that the mixture reaches equilibrium in the whole channel in time 
t ~< 10 -2 s, which falls short of  the experimental data. 

Therefore, the given model describes the experiment only for certain values of  the number of  
initial nucleation centres no = 10 8 m -3. 

5. C O N C L U S I O N S  

In the present paper  it has been shown that the difference in phase velocities cannot, in general, 
be neglected in the modelling of  boiling liquid flows. Even a small difference in the phase velocities 
[UL -- UG[ < UL may cause bubble break-up. An increase in the number  of  bubbles may, in turn, 
initiate shock waves and "slow" waves of  discharge. 
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A P P E N D I X  

Numerical Procedures 

Equations [1]-[5] may be written in the form 

where 

dt [U] + ~z IF(U)] = J(U), [A.1] 

f u 
PG~ pGEU jn 

U =  pu , F=  puE + p , J =  0 
p (i + u2/2) - p  pu (i + u2/2) 0 

n nu ~b 

are the vector parameters. 
The method of numerical integration of these equations is constructed on the basis of a two-step 

Lax-Wendroff scheme (Richtmyer & Morton 1967). 
The method of Lax-Wendroff can be applied for the integration of equations which have 

no source terms (J = 0). For integration of the set of equations [A.I] containing source terms 
the method of splitting on a physical parameter is used (Godunov & Riyabenkii 1973). This 
method applied to the given system consists of the following: at first vector U' is calculated ignoring 
source terms, then, using U', we determine the source terms J(U') with the help of which we 

define U. 
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The numerical scheme constructed by this method is: 

first step, 

second step, 

third step, 
WI 

U;+’ = (U’);+’ + AtJ((U’);+‘). I 

Since [6] cannot be represented in the form [A.l], it is integrated using the other scheme. Equation 
[6] is represented with the closing ratios [7H9] in a form more convenient for numerical integration. 
Taking the ratio of vapour density/liquid density as being small, po/pL d 1, 

fourth step, 

‘[PUG] +‘b%] _a[3Pu] I aL3pu7 _3(,,_u)(l -cl -- 
at a2 

afdna] +abulna] +I [A31 
at a2 { at a2 I 

is obtained, where 

I=3c(l -cv 
4& (u - %) + 2 (u - uo)lu - %I. 

To write the numerical scheme in a more compact form, two numerical operators are introduced: 

and 

L(/Q+’ = A;+’ - Ai” + $ [(uA);$/; - (uA);-+:~], 

where A is any parameter of the system. 
The numerical scheme for the integration of [A.31 is: 

first step, Y 

(P’u’);::/? = f [(I%);+ I + (Pk);l- gj KPwJ~+ I - wb)i”l+ u3w);f:/! 

-$[{(u~-u)(l -c)>;+, + {(u, -u)(l -~)};]L(p’lna’);~: 

second step, 

’ LA.41 

+ L(3p’u’)7+’ - 3{(uo - u)(l - s)};L(p’ln a’);+‘; 

fourth step, 

(P&K+’ = <p’u;,)i” + Atl((U’);+‘, <p’u,);+‘). , 

Consider the sequence of operations to integrate the set of equations [lH5] and [A.31 on schemes 
[A.21 and [A.4]. The values u;n+:$*, p;“,:/dz and ui’“+:F, which are preliminarily defined by 
integrating [lH5j in the first step of scheme [A.2], come into the operators Li”+‘$ used in the first 
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step of scheme [A.4]. Therefore, the first step of scheme [A.4] should follow the first step of scheme 
[A.2]. 

Analogously, the operators L ~. +1 used in the third step of scheme [A.4] contain the values u j" + l  - - j  

p7 +~ and _ja 'n+ 1, which are determined after the third step of scheme [A.2] has been performed. 
Therefore, the third step of scheme [A.4] should follow the third step of scheme [A.2]. 


